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Abstract

The viability of slow-roll approximation is examined by considering the structure of phase spaces in

scalar-tensor theories of gravitation and the analysis is exemplified with a nonminimally coupled scalar

field to the spacetime curvature. The slow-roll field equations are obtained in the Jordan frame in two

ways: first using the direct generalization of the slow-roll conditions in the minimal coupling case to

nonminimal one, and second, conformal transforming the slow-roll field equations in the Einstein frame

to the Jordan frame and then applying the generalized slow-roll conditions. Two inflationary models

governed by the potentials V (φ) ∝ φ2 and V (φ) ∝ φ4 are considered to compare the outcomes of two

methods based on the analysis of ns and r values in the light of recent observational data.
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1. INTRODUCTION

Inflation is the most plausible scenario providing not only a successful explanation of the

horizon, flatness, and monopole problems of the standard big bang cosmology [1–3], but also

the primordial density fluctuations for the formation of the observed large-scale structure of the

universe (Refs. [4–7] for reviews).

In most inflationary universe models, it is supposed that the nearly exponential expansion of

the universe is driven by a scalar field (called inflaton) which is assumed to be minimally coupled

to the gravity and slowly evolves in a nearly flat potential V (φ). In the so-called “slow-roll (SR)

approximation” [8] the most slowly changing terms in the field equations are neglected which

amounts to the approximation that the kinetic energy of the inflaton is considered to be much

smaller than the potential energy, that is, φ̇2 � V (φ) and φ̈� Hφ̇. The single-field inflationary

models predict almost scale-invariant density perturbations consistent with the observations of

anisotropies in Cosmic Microwave Background (CMB). But the existence of inflationary attractors

is necessary for the SR approximation to work [9].

On the other hand, quantum field theory in curved spacetime necessitates a non-trivial coupling

between the scalar field and the spacetime curvature even if they are absent in the classical theory.

Actually there are many other indications that the inflaton couples to the curvature of spacetime

R (summarized in a nice way in Ref. [10]). Therefore, it is reasonable to consider how the

dynamics of the inflaton changes because of this nonminimal coupling. In general, one expects

that the coupling is of the form ξφ2R with a constant ξ, but the quantum corrections may

change this situation and the behaviour of renormalization group effective coupling ξ becomes

φ dependent also. Recently in this direction the running of the non-minimal parameter ξ is

analyzed within the non-perturbative setting of the functional renormalization group [11] and

the inflationary parameters in the renormalization group improved φ4 theory at one-loop and

two-loop levels are considered in Refs. [12, 13]. To cover all these effective models, then, one can

consider a nonminimally coupled inflaton field with a general coupling function of the form F (φ)

[14–22].

We are now currently in an era stated commonly as the “precision cosmology”, implying

that the observational data sharpens and this allows one to compare the models more precisely.

Inflationary models are examined and compared by the 2018 release of the Planck CMB anisotropy

measurements [23], by checking the inflationary parameters such as the spectral index ns, the

tensor-to-scalar ratio r, and the analysis is performed by the help the tools developed in Ref. [24].

Indeed, discriminating the various inflationary models through the calculation of these parameters

in both minimally and nonminimally coupled theories is an active research area. Therefore, it

is beneficial to consider and to compare the calculation of these parameters in nonminimally

coupled theories, and to check the significance of difference between minimal and nonminimal

2



cases, considering the recent bunch of papers appearing in the literature about the subject. Thus,

the aim is to consider the inflation in the Jordan Frame (JF), without mapping into the Einstein

Frame (EF) via conformal transformations and without discussing the equivalence of two frames

or which frame is physical [25–34].

The inflationary parameters, ns and r, are obtained in the SR approximation either considered

directly in the JF through the “generalized slow-roll” (GSR) approximation [35, 36], or by

performing a conformal transformation to the EF and using the usual definitions of SR parameters

[8] in this frame; mostly the latter is preferred because of simplicity. The existence of attractor

behaviour in inflation with nonminimal coupling is also demonstrated in Ref. [9] which is necessary

for SR approximation to work.

In this paper, the SR field equations are obtained in the JF in two ways. In the first method,

the so-called “generalized” SR conditions are used directly in the JF, [35, 36], and the SR

field equations are given without any reference to the EF. In the second method, the SR field

equations are written in the EF, as they are originally suggested, and the corresponding ones

in the JF are obtained via conformal transformations followed by the GSR approximation. The

aim of the paper is not to compare the calculation of any inflationary parameter in the JF and

the EF but to get the SR field equations in the JF in a systematic way. There is an interesting

difference between the two methods. Although the SR Friedmann equations coincide, the scalar

field equations do not match exactly which leads to a difference in the calculation of inflationary

parameters, the spectral index ns and the tensor-to-scalar ratio r.

The plan of the paper is as follows: The main equations, which are used throughout this study,

and the notation are set in Sec. (2). In Sec. (3) the viability of SR approach is investigated

via the dynamical system analysis after a brief discussion on the observational predictions of

minimally coupled scalar field model. In Sec. (4) the SR approximated equations of motion in

the JF are obtained with two different methods mentioned above and the results are compared

by calculating the inflationary parameters, ns and r. Then, the nonminimally coupled scalar field

model is considered in Sec. (5) as an example of the formal examination. Finally, the concluding

remarks are given in Sec. (6).

2. SET-UP AND NOTATION

The action for the nonminimally coupled scalar-tensor theories in the JF is

SJF =

∫
d4x

√
|g|
[
F (φ)R− 1

2
gµν ∇µ φ∇ν φ− V (φ)

]
(1)
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where F (φ) and V (φ) are the coupling function and the potential of the scalar field, respectively.

Considering the flat Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric as

ds2 = −dt2 + a2(t)
[
dr2 + r2

(
dθ2 + sin2θ dϕ2

)]
(2)

the equations of motion obtained from the above action yield

6F (φ)H2 =
1

2
φ̇2 + V (φ)− 6HḞ (φ) , (3a)

4F (φ)Ḣ = −φ̇2 − F̈ (φ) + 2HḞ (φ) , (3b)

φ̈+ 3Hφ̇− 6
(
2H2 + Ḣ

)
F ′(φ) + V ′(φ) = 0 (3c)

where an overdot and a prime represent derivatives with respect to time and the scalar field,

respectively. Additionally, the equation of state parameter is

ωφ =
pφ
ρφ

= −1− 2Ḣ

3H2
(4)

with the definitions of the density ρφ = 3m2
PlH

2 and the pressure pφ = −m2
Pl(2Ḣ + 3H2) for the

scalar field.(1)

Nevertheless, in nonminimally coupled inflationary models the method followed mostly in the

literature is to map the model in the JF via conformal transformations to a model in the EF,

presumably due to the fact that the field equations and the procedure to follow are simpler in the

EF in comparison with the JF. Therefore, performing a conformal transformation of the form

g̃µν = Ω2(φ) gµν , Ω2(φ) =
2

m2
Pl

F (φ) (5)

the action in the JF given in Eq. (1) becomes in the EF

SEF =

∫
d4x

√
|g̃|
[
m2

Pl

2
R̃ − 1

2
g̃µν ∇̃µ ϕ ∇̃ν ϕ− U(ϕ)

]
(6)

where the canonically normalized inflaton field ϕ is related to the original nonminimally coupled

scalar field φ by the expression(
dϕ

dφ

)2
=

m2
Pl

2F (φ)
+

3

2
m2

Pl

(
F ′(φ)

F (φ)

)2
(7)

and the relation between potentials in two frames is

U [ϕ(φ)] =
V (φ)

Ω4(φ)
. (8)

(1) Throughout this study we set c = ~ = 1 and, consequently, the reduced Planck mass becomes m2
Pl ≡ 1/(8πG).
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Then, in flat FLRW spacetime defined in Eq. (2) Friedmann equation and the equation of motion

for the scalar field in the EF become

H̃2 =
1

3m2
Pl

[
1

2
ϕ̇2 + U(ϕ)

]
(9a)

ϕ̈+ 3H̃ϕ̇+ U ′(ϕ) = 0 (9b)

where, this time, an overdot and a prime represent the derivative with respect to transformed

time variable t̃ and the scalar field in the EF ϕ, respectively.

3. THE VIABILITY OF SLOW-ROLL APPROACH

Prior to discussion on the viability of SR approach in scalar-tensor theories it is appropriate

to highlight some key points on minimally coupled scalar field models based on the recent ob-

servations. In order to test the predictions of a model by means of the observational data one

way is to calculate the inflationary observables, ns and r, in terms of the SR parameters that are

computed by applying the SR approximations to the equations of motion. As an example, for the

minimally coupled scalar field model, which is obtained by setting F (φ) = m2
Pl/2 in Eq. (3), if

the potential of the scalar field is in the form of V (φ) ∝ φn, ns− r graphs predicted by the model

are obtained as shown in Fig. (1) for some mostly used n parameter values in the literature.

0.95 0.96 0.97 0.98 0.99

ns

0

0.1

0.2

0.3

r n = 2/3
n = 4/3
n = 2
n = 3
n = 4

N = 60

N = 50

TT+lowE +TE+EE +lensing

FIG. 1: Inflationary observables ns and r for inflaton field with monomial potential V (φ) ∝ φn

with two different e-fold numbers, N = 50 and N = 60.

As seen from the figure, it is clear that the minimally coupled scalar field models with the

monomial potential is barely compatible with the observational data for certain values of the po-

tential parameter n. Therefore, in addition to the motivations coming from fundamental theories
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as indicated in Sec. (1), the observational data also gives a hint to consider the alternatives such

as scalar-tensor theories.

The SR approximation for any model has to be justified by the existence of inflationary attrac-

tors in the phase space of the corresponding dynamical system. When it comes to scalar-tensor

theories, this issue requires an extra attention since there exist additional free parameters which

can cause the phase space to be disrupted. This means that not every solution does follow the

same inflationary pattern. Hence, it must be emphasized that without the proper inflationary

attractors, all the scenarios following from this approach are far from being credible. In Ref. [9]

this point is elaborated and a condition is given for the existence of the inflationary attractors in

a specific model. Here a brief explanation is provided on the matter by the help of the dynamical

system analysis methods.

To construct an autonomous dynamical system from Eq. (3) one can choose two independent

variables among H, φ, φ̇, so that the dimension of the phase space is reduced. Then, in order to

analyze the behaviour of the system one can find the fixed points and determine their characters

which in turn specify the structure of inflationary attractors. To this end, here H is eliminated

from the equations and, with the definition φ̇ ≡ ψ, the equation of motion for the scalar field

turns into the following form φ̇ = ψ

ψ̇ = −3Hψ + 6
(
2H2 + Ḣ

)
F ′(φ)− V ′(φ)

(10)

where

H2 =
1

6F (φ)

[
1

2
ψ2 + V (φ)− 6HψF ′(φ)

]
(11a)

Ḣ =
−1

2F (φ)

[(
1

2
+ F ′′(φ)

)
ψ2 +

(
ψ̇ −Hψ

)
F ′(φ)

]
. (11b)

Then, the fixed points of Eq. (10) are obtained as

ψ? = 0 , 2
F ′(φ?)V (φ?)

F (φ?)
− V ′(φ?) = 0 . (12)

It is obvious that the position of the fixed points lie on the ψ = 0 axis in a model-independent

way. On the other hand, unlike minimally coupled case, there exist invariant manifolds passing

through these fixed points which separate the phase space and, therefore, cause to form different

types of solutions. Consequently, this fact shows that not every initial condition describe a proper

inflationary solution which can be defined as converging to an inflationary attractor providing

the necessary amount of e-fold number, i.e. 50 . N . 60, and converging to a vanishing scalar

field that set the stage for the standard big bang cosmology. For instance, monomial potentials
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guarantee that one of the fixed points is (φ?, ψ?) = (0, 0). If this point is stable and some solution

with the proper initial conditions exists in the basin of attraction of this fixed point, the scalar field

asymptotically vanishes. Then, one has to check that whether those initial conditions satisfy the

condition on the amount of e-fold number, that is basically determined by the distance between

the fixed points. Since the position of the fixed points depends on the structure of the coupling

function, and subsequently the coupling parameter at hand, as seen in Eq. (12), it plays a major

role to find the appropriate inflationary attractors and to apply the SR approximation to the

system in a viable way.

4. SLOW-ROLL EQUATIONS IN THE JORDAN FRAME

The SR field equations in the JF are obtained in two ways : First the so-called GSR approx-

imations [9, 35, 36] are applied to the system to get the approximate field equations assuming

the existence of inflationary attractors [9] in phase space. Second after the SR field equations

are written in the EF, they are expressed in terms of the JF variables by applying the conformal

transformations defined in Eq. (5), together with similar conditions to the GSR ones.

The SR parameters in the EF are defined as usual

ε ≡ m2
Pl

2

[
U ′(ϕ)

U(ϕ)

]2
, η ≡ m2

Pl

[
U ′′(ϕ)

U(ϕ)

]
, ζ ≡ m2

Pl

[
U ′(ϕ)U ′′′(ϕ)

U2(ϕ)

]1/2
. (13)

To proceed in the EF one has to write U in terms of the EF scalar field ϕ. However, since in

general it is difficult to find ϕ in terms of φ in closed form, the generally preferred strategy is to

express each quantity of interest in terms of the JF quantities. The SR parameters, for example,

are to be evaluated at ϕhc which is the value of ϕ at which the scales of interest cross the horizon

during the inflationary epoch. Although calculation of the field value at horizon-crossing is not

an easy task in both frames, by assuming that the scales of interest cross the horizon after N

e-folding before the end of inflation, we can write

eN ≡ ã(t̃end)

ã(t̃hc)
=

Fend

Fhc

a(tend)

a(thc)
, (14)

where φhc appearing in F is the value of the JF scalar corresponding to ϕhc. This allows us to

consider the SR parameters, mapped back to the JF, at correct time. Therefore we need SR field

equations in the JF and need to solve them to get a(t) and φ(t).

In the following subsections the SR field equations are obtained for both methods and calcu-

lation of the inflationary parameters are compared. Additionally, an approximation containing a

higher-order term is also given to control the results.
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4.1. SR Equations in the JF via the GSR Conditions

The dynamics of inflationary models with a single minimally coupled inflaton is considered in

the “SR approximation” [8] which amounts to the assumptions that the inflaton evolves slowly

in comparison to the Hubble rate, and that the kinetic energy of the inflaton is smaller than its

potential energy. These conditions are expressed in a compact way as |φ̈| � H|φ̇| � H2|φ| and

φ̇2 � |V (φ)|. The generalization of these conditions to scalar-tensor theories with a coupling

function F (φ), that has a sufficiently fast convergent Taylor expansion, is

|F̈ | � H|Ḟ | � H2|F | (15)

that was first pointed out in Ref. [36]. Direct application of these conditions to the field equations

in the JF, i.e. Eq. (3), leads to the following approximate forms

H2 ' V (φ)

6F (φ)
, (16a)

3Hφ̇ ' 2V (φ)
F ′(φ)

F (φ)
− V ′(φ) (16b)

which is the equation set used to calculate the SR conditions and inflationary variables in the JF.

4.2. SR Equations in the JF via those of the EF

The SR field equations in the EF obtained from Eq. (9) are

H̃2 ' 1

3m2
Pl

U(ϕ) , (17a)

3H̃ϕ̇ '− U ′(ϕ) (17b)

applying the SR conditions given in Eq. (13). The conformal transformation of these expressions

in connection with the GSR conditions (Eq. (15)) together, the SR field equations in the JF

become

H2 ' 1

6F (φ)
V (φ) , (18a)

3Hφ̇

(
1 + 3

[F ′(φ)]2

F (φ)

)
' 2V (φ)

F ′(φ)

F (φ)
− V ′(φ) . (18b)

The SR approximated Friedmann equation, i.e. Eq. (18a), is exactly the same as the one obtained

in the previous section but the SR approximated scalar field equation is different from Eq. (16b)

derived in the GSR method.
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The difference between the scalar field equations in the JF implies that the results of calculation

of φhc are different, and thus ϕhc and SR parameters are different in turn. As the data becomes

sharpen, this difference may lead to important difference between the observed and theoretically

calculated values of the inflationary parameters.

4.3. Comparison of SR Parameters and Inflationary Observables

Here the SR parameters and the inflationary observables, ns and r, are calculated using the

results obtained by two different approaches given above. To begin with, the following SR pa-

rameters

εH ≡ −
Ḣ

H2
, ηH ≡

ε̇H
HεH

; εF ≡
Ḟ

HF
, ηF ≡

ε̇F
HεF

(19)

are defined and the inflationary variables in terms of these SR parameters

r = 8 (2εH + εF ) , (20a)

ns = 1− 2εH − εF −
2εH ηH + εF ηF

2εH + εF
(20b)

given in Ref. [37] are taken into account. Then, the equations of motion in Eq. (16), which are

obtained by applying the GSR conditions, yield the SR parameters as

εH = F

(
F ′

F
− V ′

V

)(
2
F ′

F
− V ′

V

)
, ηH = 2

(
F ′

F
− V ′

V

)−1
ε′H ,

εF = 2F ′
(

2
F ′

F
− V ′

V

)
, ηF = 8F ′′ − 2F

[ (
F ′V ′

)′
F ′V

+ 2

(
F ′

F

)2
−
(
V ′

V

)2] (21)

in terms of the coupling function and the potential of the scalar field.

On the other hand, if these SR parameters are calculated by Eq. (18), i.e. the equations trans-

formed from EF to JF, and the results are compared with the ones obtained by the first method,

the relation between SR parameters and, consequently, the inflationary observables computed by

two method is found to be

A(1) = A(2)

[
1 + 3

(F ′)2

F

]
, A = εH/F , ηH/F , r, ns − 1 (22)

where the subscripts (1) and (2) represent the parameters obtained by the GSR approach in the

JF and the ones transformed from EF to JF, respectively.

Additionally, the e-fold integrals are defined as

N(1) =

φe∫
φi

H

φ̇
dφ =

1

2

φe∫
φi

V

2V F ′ − V ′F dφ . (23)
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and

N(2) =

ϕe∫
ϕi

H̃

ϕ̇
dϕ =

1

2

φe∫
φi

[
1 + 3

(F ′)2

F

]
V

2V F ′ − V ′F dφ . (24)

for two methods.

4.4. SR Equations in the JF via the Higher Order SR Conditions

The SR approximation has to be applied meticulously for the non-minimal coupling case since

the GSR approach [35–37] might be imprecise in the sense of preserving attractor structure as

illustrated in Sec. (3). Thus, comparison of the above analysis, i.e. GSR and EF-to-JF methods,

with a stricter one may be instructive. Here, without using any conformal transformation tool

the analysis in the JF is performed by keeping a higher order term (Ḣ) in the equation of motion.

Following this manner, Eqs. (3a) and (3c) become

H2 ' V

3F
(25a)

3Hφ̇ ' 6H2F ′ + 3ḢF ′ − V ′ (25b)

where Ḣ, which differs from the original one(2), can be obtained from Eq. (25a) as

Ḣ =
φ̇

6HF 2
(V ′F − V F ′) =

φ̇

6H

(
V

F

)′
(26)

together with the following expression

φ̇

H
=

F (4V ′F ′ − V ′F )

3V (F ′)2 + 2F
=

[
2 + 3

(F ′)2

F

]−1
FV ′

(
4
F ′

F
− 1

)
. (27)

Using the set given by Eq. (25), the SR parameters can be written as

εH =

[
2 + 3

(F ′)2

F

]−1
F

(
F ′

F
− V ′

V

)(
2
F ′

F
− V ′

V

)
, ηH =

φ̇

H

ε′H
εH

εF =

[
2 + 3

(F ′)2

F

]−1
2F ′

(
2
F ′

F
− V ′

V

)
, ηF =

φ̇

H

ε′F
εF

(28)

where φ̇/H is given by Eq. (27) and, furthermore, number of e-folding integral is

N =

∫
Hdt =

φe∫
φi

H

φ̇
dφ =

φe∫
φi

3V F ′2 + 2F

F (4V ′F ′ − V ′F )
dφ . (29)

(2) Although it is possible to include approximated Ḣ expression by applying the SR conditions of this approach

to Eq. (3b) directly, reproducing Ḣ from Eq. (25a) is preferred due to computational convenience and, more

importantly, comparability of analytical representations with the results of previously given methods.
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FIG. 2: The phase spaces of the system given in Eq. (10) together with Eq. (30). Left (right)

column corresponds to n = 2 (n = 4) for the potential with two different values of the coupling

constant. Here m2
Pl = 1 for simplicity. Dots in the phase planes are the fixed points of the

system given in Eq. (12).

5. AN EXAMPLE : NONMINIMALLY COUPLED SCALAR FIELD

In order to exemplify the claims mentioned in the previous two sections the coupling function

and the potential of the scalar field are chosen in the following forms

F (φ) =
1

2

(
m2

Pl + ξφ2
)
, V (φ) = Vo φ

n . (30)

Then, the fixed points in Eq. (12) become

ψ? = 0 ; φ (1)
? = 0 , φ (2,3)

? = ±
√

nm2
Pl

ξ(4− n)
(31)

where for n = 1 and n = 4 the fixed points φ
(1)
? and φ

(2,3)
? , respectively, do not exist. A dynamical

system analysis for this model was studied in Ref. [38] in detail and a condition for the stability

of the solutions was provided in Ref. [9]. Therefore, those issues are not discussed further here,
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instead, to illustrate the aforementioned claims, the form of the solutions obtained by solving

Eq. (10) numerically are represented in Fig. (2) for different values of the coupling parameter,

ξ, and for the potentials with n = 2 and n = 4. It seems that n = 4 is the exceptional case

for this model and all solutions converge to the inflationary attractor before reaching the fixed

point at the origin. Nevertheless, for the cases with n 6= 4, it can be seen that as the value of the

coupling constant increases, the fixed points get closer to each other and this makes the length of

the appropriate inflationary attractors smaller in the region between the fixed points. As a result,

the initial conditions that give rise to a solution, to which the SR approximation can be applied

properly, are restricted by the value of the coupling constant in addition to the e-fold number.

On the other hand, outside that region, i.e. outside the basin of attraction of the fixed point at

the origin, the solutions are divergent although they obey ωφ ≈ −1.

To conclude this debate, it can be stated that the presence and the structure of the inflationary

attractors severely depend on the value of the coupling parameter ξ which in turn implies that

blindly applying the SR approximation leads to wrong conclusions. Therefore, before applying

the SR approximation one has to check the phase space structure and determine the range of free

parameters in the model.

Following the dynamical system analysis, two previously explained methods are applied to the

model to calculate the inflationary variables and to compare the predictions in the light of the

observational data. For the model at hand the SR parameters in Eq. (21) obtained by the GSR

method become

εH =
1

2

[
(n− 2)(n− 4)ξ +m2

Pl

n2m2
Pl + (n2 − 8)ξφ2

φ2(m2
Pl + ξφ2)

]
,

ηH = (4− n)ξ +
nm2

Pl

φ2
− (4− n)ξφ2 − nm2

Pl

(2− n)ξφ2 − nm2
Pl

[
(n+ 2)ξ +

nm2
Pl

φ2
− 4ξ2φ2

m2
Pl + ξφ2

]
,

εF = 2ξ
(4− n)ξφ2 − nm2

Pl

m2
Pl + ξφ2

,

ηF =
8ξm2

Pl

m2
Pl + ξφ2

(32)

and the exit value of the scalar field, which is determined by the solution of the equation stemming

from the condition εH(φe) = 1, is obtained as

φ2
e

m2
Pl

=
−1 + nξ(n− 3)±

√
(nξ + 1)2 + 4nξ

ξ
[
2− (n− 2)(n− 4)ξ

] . (33)

This expression naturally brings about following two conditions

φ2
e ≥ 0 , (nξ + 1)2 + 4nξ ≥ 0 (34)
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that constraint the values of the potential parameter n, and the coupling constant ξ. Furthermore,

the initial value of the scalar field in terms of the exit value and e-fold number is obtained from

the solution of Eq. (23) as

φ2
i =


φ2
e + 8m2

PlN , n = 4[
φ2
e +

nm2
Pl

ξ(n− 4)

]
e−2ξ(n−4)N − nm2

Pl

ξ(n− 4)
, n 6= 4

(35)

which also can be recast into the following form

φ2
i =

 φ2
e + 8m2

PlN , n = 4(
φ2
e − φ2

?

)
e2nNm

2
Pl/φ

2
? + φ2

? , n 6= 4
(36)

where φ? is the fixed point of the system. This shows that the position of the fixed point determines

the proper initial conditions converging to the inflationary attractors. Therefore, in addition to

e-fold number N , value of the coupling constant also effects the validity of SR approximation as

mentioned in the previous section since value of the fixed point depends on the coupling constant.

On the other hand, in the second method, i.e. in the EF-to-JF transformed frame, the SR

parameters are calculated by plugging the results given in Eq. (32) together with the coupling

function into Eq. (22). Then, following the same arguments above, the exit value of the scalar

field is obtained as follows

φ2
e

m2
Pl

=
−1 + nξ(n− 3)±

√
(3nξ + 1)2 + (2nξ)2

ξ
[
2(1 + 6ξ)− (n− 2)(n− 4)ξ

] (37)

which, this time, yields only one mathematical constraint φ2
e ≥ 0. Additionally, the solution of

Eq. (24) yields the initial value of the scalar field as
(
φ2
i − φ2

e

)(
1− 3ξ

4m2
Pl

)
− 3

4m2
Pl

ln

(
ξφ2

e − 1

ξφ2
i − 1

)
= 8m2

PlN , n = 4

ln

([
ξ(n− 4)φ2

i + nm2
Pl

ξ(n− 4)φ2
e + nm2

Pl

]1−3n/2ξ [
m2

Pl + ξφ2
i

m2
Pl + ξφ2

e

]3(n−4)/2ξ)
= 2ξ(4− n)N , n 6= 4

(38)

Before taking any further steps towards investigation of ns−r relations, it is useful to examine

the outcomes of the inequalities between n and ξ coming from Eqs. (33) and (37). For the one

obtained in the GSR method the expression on the left in Eq. (34), namely φ2
e ≥ 0, is more

restrictive than the other one, and it is also the one and only constraint for the EF-to-JF method.

Therefore, the condition φ2
e ≥ 0 is enough to examine the relation between the parameters of

the model for both approaches. The graphical illustrations of these constraints are shown in Fig.

(3). First thing to notice from the figure is that the roots with positive sign for both methods
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FIG. 3: Parameter spaces of the potential and the coupling parameters for the GSR (left) and

the EF-to-JF (right) methods given by Eqs. (33) and (37), respectively. Only the values in the

shaded regions are allowed. Plus and minus signs in the plots correspond to the same signs in

the roots of φ2
e/m

2
Pl for both methods.

allow more values especially for n > 0 and ξ > 0 that describes the part of the parameter space

which is primarily focused on in this work. In that region it seems that the increasing n values

naturally restrict the values of ξ. However, these conditions constrain strong couplings since the

small values of ξ are still applicable. Another point to mention is that for the region n > 0 and

ξ < 0 the values in the GSR method is restricted whereas in the EF-to-JF method all values are

acceptable.

In order to compute ns− r relations for the GSR method [the EF-to-JF method] one can plug

Eq. (33) [Eq. (37)] into Eq. (35) [Eq. (38)] and then use the resulting expression for φ2
i in

Eq. (32) together with Eq. (20) [and Eq. (22)]. Here two potential parameters are considered,

namely n = 2 and n = 4 together with e-fold number N = 60. The results are shown in Fig. (4)

with different color-coded coupling parameter values for both methods. For n = 2 there occurs

very small difference in ns− r relations of both methods so that the curves almost coincide. That

is why the differences between ns and r values in both methods are also given in the right column

of the figure and they both are in the order of 10−4 for n = 2. However, for n = 4 the difference

become obvious as ξ increases in observationally acceptable regime. This time the gap between

ns and r values are in the order of 10−3. In the GSR method for n = 4 the curve converges as ξ

value increases whereas in the EF-to-JF method ξ is bounded considering the observational data.

Regarding the higher order SR approximation, for which ns− r relations is shown in Fig. (5),

the analysis is not given explicitly for n = 2 due to the fact that they do overlap and have no

significant differences, in other words, the results of the GSR and the higher order SR methods

coincide. However, in the case of n = 4 the difference between outcomes of the GSR and the

higher order SR methods grows as the coupling parameter ξ increases within the observationally
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FIG. 4: ns − r graphs for the potential V = Vo φ
n with two parameters n = 2 (top panel) and

n = 4 (bottom panel) with illustration of the difference of inflationary variables. Here tilde

stands for the method of EF-to-JF. (1) and (2) in the bottom panel represent the solutions

obtained by the GSR and EF-to-JF methods, respectively.

acceptable range. Therefore, it can be concluded that the higher order SR analysis matches up

with the EF-to-JF approach as seen from Figs. (4) and (5). Nevertheless, this similarity can

be inferred directly from the analytical expressions of inflationary variables given in the related

sections of the methods.

The existence of a difference between the two approaches, namely the GSR and the EF-to-JF

methods, is interesting in that in Ref. [39] it has been shown that JF field equations, if expressed

in terms of EF variables, agree with the EF field equations directly obtained from the EF action,

provided that some consistency conditions are satisfied, and that these conditions are always met.

This result implies that the two frames are, at least, mathematically equivalent which in turn

15



0.95 0.96 0.97 0.98

ns

0

0.1

0.2

r

1

2

TT+lowE +TE+EE +lensing

0

2

4

6

8

ξ(
×

10
−

2 )

0 2 4 6 8
ξ ×10−2

0

4

8

|n
s
−
ñ
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FIG. 5: ns− r graphs for the potential V = Vo φ
4 with illustration of the difference of inflationary

variables. Here tilde stands for the method of higher order SR. (1) and (2) in the left panel

represent the solutions obtained by the GSR and the higher order SR methods, respectively.

implies that one can work in one frame, if there is any advantage of simplicity over the other, and

then can go to the other frame. Further in Ref. [40] it has been shown that the spectral indices are

the same in JF and EF. The route that is followed here is in the reverse order: the approximate

JF equations of motion is obtained from those of EF expressed in terms of JF variables and it is

compared with the approximate equations of motion obtained directly in the JF. The difference

in the results does not seem to be because of the mathematical in-equivalence of the frames

but stems from the fact that the SR approximation is a very critical issue and must be applied

carefully for the nonminimal coupling case. From our point of view the method that first writing

the SR field equations in EF and then expressing them in terms of JF variables together with the

GSR parameters seems to be safer and more precise.

The change in the scalar field equation can be expected on the ground that the conformal

transformations themselves are dependent on the JF scalar field φ and that the ‘generalized’

approximation directly in the JF cannot give exactly the same scalar equation obtained via

conformal transformations from that of the EF.

6. CONCLUSION

In this study the viability of SR approximation in STT has been studied with an example

model. At first the fixed points have been investigated through the dynamical system analysis

after a brief discussion on the shortcomings of the minimal coupling case. The conclusion to this

formal examination is that the positions of the fixed points of the system, which depends on the
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values of the parameters of the model at hand, are very crucial to determine the viability of the

SR approximation that is subject to the existence of the appropriate inflationary attractors.

There are two different approaches to obtain the SR equations in the JF. The first one is

called the “generalized slow-roll” approximation which generalize the SR conditions on the scalar

field in the minimal coupling case to the coupling function and those resulting conditions are

applied to the system together with the original ones belonging the minimal coupling case. This

whole process is implemented in the JF. The second approach, on the other hand, is expressing

the equations of motion in the EF, applying SR conditions of the EF and, then, conformally

transforming the resulting equations to the JF where, finally, the GSR conditions are applied.

Both methods have been applied for STT in Sec. (4) and it has been shown that their comparison

leads to a relation given in Eq. (22) between the SR parameters and the inflationary variables.

Hence, calculations of the parameters, which are to be compared with the observational data,

may give different results for two methods.

As mentioned before the formal examination of STT within this study has been exemplified

with a scalar field that couples to the curvature of the spacetime through the term ξφ2R together

with the monomial potential in the form of V (φ) ∝ φn in Sec. (5). Phase spaces for two potential

parameters, n = 2 and n = 4, given in Fig. (2) have been obtained with two different values

of the coupling constant. As pointed out before, it has been shown that the structure of phase

spaces crucially depends on parameters of the coupling function besides the exceptional case of

n = 4 in which the origin is a global stable fixed point to which all solutions converge through the

inflationary attractors. Consequently, investigation of phase spaces in the beginning is necessary

to see the global picture of the model and to classify the initial conditions.

In addition to the phase space analysis it has been found that Eqs. (33) and (37) naturally

gives a constraint between the parameters of the model, ξ and n, the result of which is illustrated

in Fig. (3). In spite of the fact that the valid regions of the parameter space have some differences

in both methods, it is clear that for the most relevant region, i.e. n > 0 and ξ > 0, as n increases

the coupling becomes weaker, in other words, the strong coupling is forbidden. Although this

comparison is not as precise as the one coming from the observations of the inflationary variables

in order to constrain the values, the outcome is important due to its convenience to compare the

whole parameter space directly within the model itself.

In Fig. (4) ns−r relations have been given to analyze the predictions of the model in the light

of the recent observational data [23] again for the same potential parameters, n = 2 and n = 4,

and the e-fold number N = 60 together with the differences of ns and r in terms of ξ for both

methods. For n = 2 it seems that value of the coupling parameter is in the order of 10−3 whereas

order of the differences between values of the inflationary variables, ns and r, are 10−4. Two

curves obtained from two different approaches, the GSR and the EF-to-JF methods, coincide for

this case. On the other hand, for the case of n = 4, ξ and the differences in ns and r are in the
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order of 10−2 and 10−3, respectively. Two curves differ in the observable region in an obvious way.

The same pattern is seen in Fig. (5) as well, where the GSR method has been compared with the

higher order SR approach. Since the higher order SR method is closer to the non-approximated

version in comparison, this result also supports the conclusion that the EF-to-JF method is more

precise as mentioned before.
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